Antioxidants inhibit neuronal toxicity in Parkinson's disease-linked LRRK2.

نویسندگان

  • Dario C Angeles
  • Patrick Ho
  • Brian W Dymock
  • Kah-Leong Lim
  • Zhi-Dong Zhou
  • Eng-King Tan
چکیده

Mutations in leucine-rich repeat kinase-2 are the most common cause of familial Parkinson's disease. The prevalent G2019S mutation increase oxidative, kinase and toxic activity and inhibit endogenous peroxidases. We initially screened a library of 84 antioxidants and identified seven phenolic compounds that inhibited kinase activity on leucine-rich repeat kinase-2 substrates. The representative antioxidants (piceatannol, thymoquinone, and esculetin) with strong kinase inhibitor activity, reduced loss in dopaminergic neurons, oxidative dysfunction, and locomotor defects in G2019S-expressing neuronal and Drosophila models compared to weak inhibitors. We provide proof of principle that natural antioxidants with dual antioxidant and kinase inhibitor properties could be useful for leucine-rich repeat kinase-2-linked Parkinson's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity.

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) cause late-onset Parkinson's disease indistinguishable from idiopathic disease. The mechanisms whereby missense alterations in the LRRK2 gene initiate neurodegeneration remain unknown. Here, we demonstrate that seven of 10 suspected familial-linked mutations result in increased kinase activity. Functional and disease-associated mutation...

متن کامل

Inhibitors of leucine-rich repeat kinase 2 (LRRK2): progress and promise for the treatment of Parkinson's disease.

Mutations in the gene for leucine-rich repeat kinase 2 (LRRK2) have been linked to several familial and sporadic late-onset cases of Parkinson's disease. The cumulative data for the effects of mutant forms of this enzyme on neuronal degradation and the pathophysiology of Parkinson's disease create a compelling case for drug discovery based on inhibition of the mutant forms of LRRK2. This review...

متن کامل

A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity.

Mutations in LRRK2 are one of the primary genetic causes of Parkinson's disease (PD). LRRK2 contains a kinase and a GTPase domain, and familial PD mutations affect both enzymatic activities. However, the signaling mechanisms regulating LRRK2 and the pathogenic effects of familial mutations remain unknown. Identifying the signaling proteins that regulate LRRK2 function and toxicity remains a cri...

متن کامل

GTPase Activity and Neuronal Toxicity of Parkinson's Disease–Associated LRRK2 Is Regulated by ArfGAP1

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD-associated mutations in LR...

متن کامل

Contribution of GTPase activity to LRRK2-associated Parkinson disease

Mutations in the leucine-rich repeat kinase 2 (LRRK2, PARK8, OMIM 607060) gene represent the most common known cause of hereditary Parkinson's disease (PD) with late-onset and dominant inheritance. LRRK2 protein is composed of multiple domains including two distinct enzymatic domains, a kinase and a Ras-of-complex (Roc) GTPase, connected by a C-terminal-of-Roc (COR) domain, and belongs to the R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of clinical and translational neurology

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2016